2nd March 2022 HIGREEW project workshop, Pilsen (Czechia)

Overview of organic redox flow batteries

Petr Mazúr

NEW TECHNOLOGIES RESEARCH CENTRE UNIVERSITY OF WEST BOHEMIA

40.0

Motivation

- Cost reduction (< 100 \$/kWh)
- Increase of energy density
- Environmentally friendliness

Steel industry increased demand in China

https://www.nevadavanadium.com/

Required properties

- \rightarrow High solubility (in aqueous media)
- \rightarrow Suitable redox potential (OCV)
- \rightarrow Fast and multi-electron transfer
- \rightarrow Stable, cheap and non-toxic

Commercial development

- Jena Batteries (GER)
- Kemiwatt (FRA)
- XL Batteries (USA)
- CM-Blu (GER)
- Green Energy Storage (ITA)

Perspective groups of compounds

Solubility

Can be influenced by:

✓ Substituents and position

$$\frac{E}{V} = Fz\frac{c}{2}U_{OCV}$$

Neg. charged functional groups:

carboxyl- < phosphate- < phosphonic- < sulfate- < sulfonic < sulfonimido-

Pos. charged functional groups: pyridinium- < imidazolium- < tetraalkylammonium-

Non-charged functional groups:

cyano- < mercapto- < hydroxy- < morpholino- < polyether-groups

D. Konya et al., Molecules 2021, 26, 1203

Solubility

Can be influenced by:

- **Counter ions**
- Supporting electrolyte / pH
- Solubilizing agent

 $\frac{E}{V} = Fz\frac{c}{2}U_{OCV}$

J. Luo et al., Joule 3, 149–163, January 16, 2019

J. Mao et al., Journal of The Electrochemical Society, 2020 167 070522

Redox potentials

Can be tailored by:

substituents and position

$$E = E^{0} + \frac{RT}{ZF} ln \frac{\prod (a_{ox,i})^{n_{i}}}{\prod (a_{red,i})^{m_{i}}}$$

Electron-withdrawing substituents move E° towards more positive values: nitrato > cyanido > perfluormethyl > carboxy > chloride > fluoride

Electron-donating substituents move E° towards more negative values: ethyl < methyl < thiol < hydroxy < ammino < triethylamino

M. R. Gerhardt, Adv. Energy Mater. 2017, 7, 1601488

Electrode reaction mechanisms and kinetics

✓ pH dependent E° if involves H+/OH- ions

S. Jin, ACS Energy Lett. 2019, 4, 6, 1342-1348

Electrode reaction mechanisms and kinetics

✓ Reversibility can be lost due to subsequent chemical reaction (e.g. protonation)

K. Rak, Org. Biomol. Chem., 2021, 19, 8830-8839

Active species degradation

✓ Depends on pH, temperature, SoC and concentration

D. G. Kwabi, Chem. Rev. 2020, 120, 6467-6489

Membrane cross-over

- ✓ Active species diffusion/migration
- Net overflow due to osmosis/electroosmosis

Mitigation strategies: equalized ionic strength, selective membrane, mixed electrolyte

C. DeBruler, ACS Energy Lett. 2018, 3, 663-668

Other aspects in RFB development

Electrolyte formulation

- Supporting electrolyte
- Ionic conductivity vs. solubility vs. viscosity

Component selection/optimization

- Carbon felt/paper activation
- Electrode performance stability (deactivation)

Stack design

- Pressure drop (pumping losses) vs. Shunt currents

EVROPSKÁ UNIE Evropské strukturální a investiční fondy Operační program Výzkum, vývoj a vzdělávání

The work was supported from European Regional development Fund-Project "Organic redox couple based batteries for energetics of traditional and renewable resources (ORGBAT)" No.CZ.02.1.01/0.0/0.0/16_025/0007445.

Thank you for attention.

The research leading to these results has received funding from the European Union under Grant Agreement no. 875613