m-H I G R E EW AORFB, from chemistry selection to

First Project electrolyte development
Workshop

In Pilsen and Online

Eduardo Sdanchez Diez, Maddalen Agirre, Ana Catarina Lopes, Nerea Marquinez (CICe);
Juan Asenjo-Pascual, Ivan Salmeron-Sdnchez, Juan Ramodn Avilés, Pilar Ocon (UAM);
Petr Mazur, Jaromir Pocedi¢ (UWB/PFES)



Why AORFBs?

4 VRFB
| Strategic material

BMS
(system

supervisor)

ion exchange
membrane

electrodes

Price/Scarcity Earth abundant
Limited energy density Tunable Ered and solubility

Thermal stability Minimized crossover

Slide 2 '
- HIGREEW - 875613 - 1%t Project workshop

300

V,0O; Price USD/Ib

240

0o T T T T T
2006 2008 2010 2012 2014 2016 208 2020

ENERGY STORAGE

Redox flow batteries go organic

The use of renewable resources as providers to the electrical grid is hampered by the intermittent and irregular
nature in which they generate energy. Electrical energy storage technology could provide a solution and now, by

using an iterative design process, a promising anolyte for use in redox flow batteries has been developed.
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|deal electrolyte for AORFB — HIGREEW targets

Active materials Electrolyte — battery

- Cost of active material (1-5 €/kg) - Energy cost (< 50 €/kWh)

- Water solubility (2 eq./L) - Energy density (> 30 Wh/L)

- Chemical & thermal stability (T range) - Capacity retention (8.000 cycles)
- Redox kinetics (> 103 cm/s) - Efficiency

> Conductivity > 0,1 S/cm
> Viscosity: < 10 cP
° pH: neutral pH

- Cell voltage (> 1V)




Planning

1. Design & synthesis of active materials

2. Electrochemical characterization

3. Scale-up process & electrolyte development




Design & synthesis of active materials

NaO  ON 50,
) ’ WND_@N N(Me)s
(Me)sN N(Me);
7\
NN o(v)" -0.38V HO:S O‘O SOH %
PHO

HO~ \\ 3

cr,
O/M N(Me);
N(Me)3 2
SO;Na ~)
0.213VpH 0 0.39V NT - N
-0.86V pH 14 -0.47V PH 9 £ CI p
. -
oK Fe(CN)g 0.81V
) 0.39V N
‘o ci o
_ A OH
-0.684V pH 14 -0.45V
H03S SO3H 2
0.85V pH 0 <
@ m
NS
Viologens Fe TEMPO %
-0.45 to -0.35V SHE 0.39 to 0.61V 0.79 10 0.81V -
Quinoids
-0.68 to 0.95V
Quinoxaline
-0.86 to 0.57V

Slide 5

Viologens as anolyte & TEMPO and Fe-based catholytes
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Indigo derivatives: electrochemical characterization
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Catholytes: electrochemical characterization
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Cell testing: viologen-TEMPO system

* CV studies: Viologen B1-3 and TEMPO based C1-1 redox pair - Cell voltage 1,46 V /\ I o o
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Characterization summary

Kinetics (103 cm/s) @
Solubility (1 mol e-/L)
Redox potential (-0,2 V) 3¢
Viscosity (1 P) 3¢
Bifunctional 3¢
Straightforward synthesis @

Kinetics (102 cm/s) @

Solubility (2-3 mol e-/L) @

Redox potential (0,8 t0 0,94 V) @
Viscosity (1-10 cP) @
Straightforward synthesis 3§
Stability

7 N\__/ \ B: Viologen-based

_N+ +N_
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Kinetics (102 cm/s) @

Solubility (2-2,6 mol e-/L) @
Redox potential (-0,4 to -0,7 V) @
Viscosity (1-10 cP) @
Straightforward synthesis @
Stability (4,4’-bipyridinium salts) @

Kinetics (103 cm/s) @
Solubility (1,2 mol e-/L)
Redox potential (0,4 V)
Viscosity (1-2 cP) @
Straightforward synthesis @
Stability @

C3: Ferrocyanide based

[ M4[Fe(CN)g] J
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Scale-up process: Transfer from lab to pilot

* Chemicals (toxic, volatile, explosive, carcinogenic, etc.)
* Reagents feasible at lab scale, may pose problems at bigger scale

» Solvents have to be redefined: a) safety/legal regulations; b) operation purposes; c) recovery; d) cost

 Synthetic routes
* Minimum number of steps and high yields
* Atom economy
e Convergent synthesis

* Operation conditions
* Temperature
 Purification techniques
* Engineering aspects

* Anion/cation exchange columns
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* Viologen compounds @
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Scale-up process: Transfer from lab to pilot

| Sl I J

« Straightforward synthesis from bipyridine — product isolated as solid —a MN@“’
 DMF was replaced by alternative high boiling point, non-toxic solvents
(ROH, Aromatics)
 Efficiency of the reaction — critical in the purity of final product (> 95%)
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s50C 0.1 0.5 0.9
CIC 1.34 1.24 1.12
COC1 2.92 2.12 1.36
coc2 1.56 1.3 1.16
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Scale-up process: Transfer from lab to pilot

!
0

* High redox potential TEMPO derivatives ¥
* High performance compounds required 4-6 reaction steps
* Complex purification techniques (chromatography)

* Ferrocyanide based compounds @
* Already existing industry for ferrocyanide production
 Straightforward synthesis

» Water evaporation — undesired / tedious process

638\_/_ ND_@N_\_/863

reElel 25 €/kWh
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Electrolyte formulation — Starting point

 Active materials are main but not only component of electrolytes

* pH, supporting electrolyte salts, charge carriers Active Material (M)
B2-2 (0.9M)
B2-2 red (0.9M)
B2-2 (0.9M)
B2-2 (0.9M)

* Screening 52:2{0-9M)
C3-1(0.9M)
* Concentration/solubility f(T): fixed as 0,9M B2-2 and 0,9M C3-1
* Supporting electrolyte: defined as pH 7 and NH,Cl as carrier salt
* Concentration of carrier salt (0-3 M NH,Cl) — ionic strength

* Temperature, SoC & operating conditions

* Impact of composition on:
* Thermal stability: NH,Cl and (NH4),M,_, [Fe(CN)6] 0-45°C
e Conductivity and efficiency
* Crossover: water transport depends on SoC/lonic strength/T
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Electrolyte formulation — Start point — Beyond AM
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* Supporting electrolyte: defined as pH 7 and NH,Cl as carrier salt
* Concentration of carrier salt (0-3 M NH,Cl) — ionic strength
* Impact of composition on:

* Thermal stability: NH,Cl and (NH4),M,_, [Fe(CN)6] 0-45°C

* Conductivity and efficiency

* Crossover: water transport depends on SoC/lonic strength/T
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Conclusions

- Development of electrolytes is a long way from chemistry selection and should be
adapted throughout different stages

- Active material defines electrochemistry — but there is much behind
- Scale-up process is a critical role in the irruption of new chemistries

- Variety of active materials (>20) & two electrolyte solutions developed
> High performance electrolyte (1.3 V; < 0,01%/cycle) based on highly soluble active materials
> Cost competitive (25 €/kWh) electrolyte (0,8 V; < 0,01%/cycle, up to 77% EE)

STILL TO COME
- Successfully integrate electrolytes in HIGREEW stacks



A HIGREEW
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