

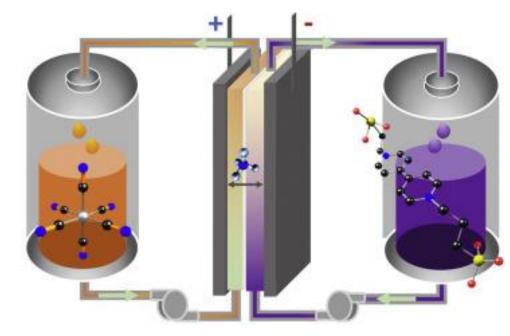
Workshop -Flow batteries, bringing the technology to the market

Vitoria-Gasteiz

Jan Svoboda, Petr Mazúr, Václav Čmolík, <u>Jiří Charvát,</u>

Characterization of AORFB

UWB Pilsen, UCT Prague



The research leading to these results has received funding from the European Union under Grant Agreement no. 875613

Introduction

- Optimisation of electrolyte composition
 Comparision of mixed and non-mixed electrolyte
- Oxygen permeation
- Effect of flow rate

• Effect of SOC

K₄Fe(CN)₆ posilyte

SPr₂V anolyte

J. Luo et al., Joule (3), Issue 1, 2019, 149-163

RFB tests: Experimental

Procedure:

Capacity

evaluation

Characterization

Experimental conditions:							
Electrodes	GFD4.6 EA (4,6 um thick, 4 cm2 active area)						
Membrane	FSXX0 (Fumatech, dry)						
Anolyte	XM V(SPr)2 in XM XCl 15 ml (0% SOC)						
Catholyte	XM X4Fe(CN)6 in H2O 20 ml (0% SOC)*						
Atmosphere Under 5.0 nitrogen							
NOTE: Catholyte was always of same concentration of active species as anolyte							

Current density	CC cycling (125, 100, 75 and 50 mA cm-2, 0.3-1.1 V cut-offs)
Characterization	EIS + load curves (50% SOC), various flow rates
Stability test	CC cycling (100 mA cm-2, 0.3-1.1. V, 50c)
Capacity evaluation	CC-CV cycling (100 mA cm-2, 2c)
Characterization	EIS + load curves (50% SOC), various flow rates (40 ml min-1)

rates (40 ml min-1)

cut-offs, 2c)

EIS + load curves (50% SOC), various flow

CC-CV cycling (100 mA cm-2, 0.3-1.0 V

NOTE: Sometime, final testing was performed after catholyte exchange for fresch one to see the anolyte capacity decay.

and without supporting salts.

RFB TESTS: CELL POLARIZATION

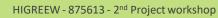
Negolyte composition	Membrane	Rohm (Ω cm²)	Rohm (%)	Rchar (Ω cm²)	Rdis (Ω cm²)
0.9M SPr2V in 3M NH4Cl	FS-950	1.16	85%	1.32	1.37
0.75M SPr2V in 2M NH4Cl	FS-950	1.84	92%	2.10	1.99
0.75M SPr2V in 2M KCl	FS-950	2.64	86%	2.68	3.08
0.9M SPr2V in 2M NaCl/KCl	FS-950	2.04	87%	2.16	2.34
1.1M SPr2V in 2M NaCl/KCl	FS-950	1.16	86%	1.48	1.35
1.1M SPr2V in 2M NH4Cl	FS-950	0.86	81%	1.06	1.06

LC in +50% SOC, SGL 46EA, 4 cm2, 40 ml/min, RT GB... nitrogen-filled glove-box act... membrane activated (1h in H_2O 60°C, 1h in H_2O 80°C)

RFB TESTS: CELL CYCLING

Negolyte composition	Membrane	CE (%)	VE (%)	EE (%)	CU (%)	CD (%Qteo)
0.9M SPr2V in 3M NH4Cl	FS-950	99.2	68.8	68.3	91	-12.6
0.75M SPr2V in 2M NH4Cl	FS-950	99.1	55.1	54.6	86	-20.4
0.75M SPr2V in 2M KCl	FS-950	99.3	42.4	42.1	76	Cathode failure
0.9M SPr2V in 2M NaCl/KCl	FS-950	99.4	50.7	50.4	75	-10.3
1.1M SPr2V in 2M NaCl/KCl	FS-950	99.5	57.3	57.0	84	-17.8
1.1M SPr2V in 2M NH4Cl	FS-950	99.2	72.5	71.9	87	-17.1*

LC in +50% SOC, SGL 46EA, 4 cm2, 40 ml/min, RT GB... nitrogen-filled glove-box act... membrane activated (1h in H_2O 60°C, 1h in H_2O 80°C)

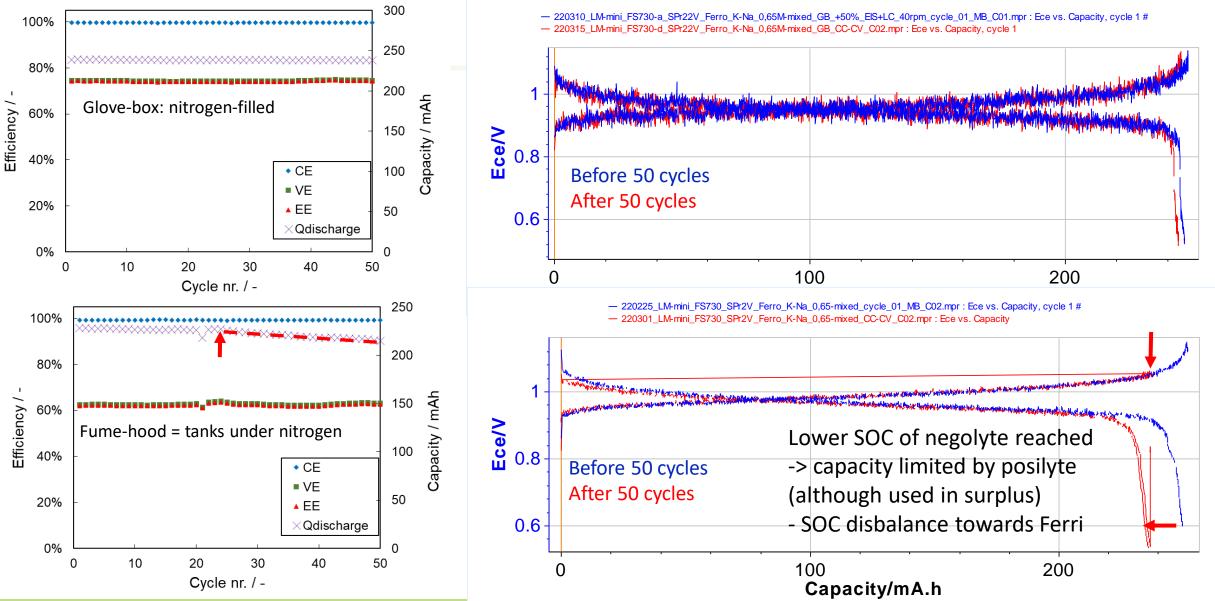

* Partially due to posilyte leak, only 3% decay after posilyte exchange.

RFB TESTS: CELL POLARIZATION

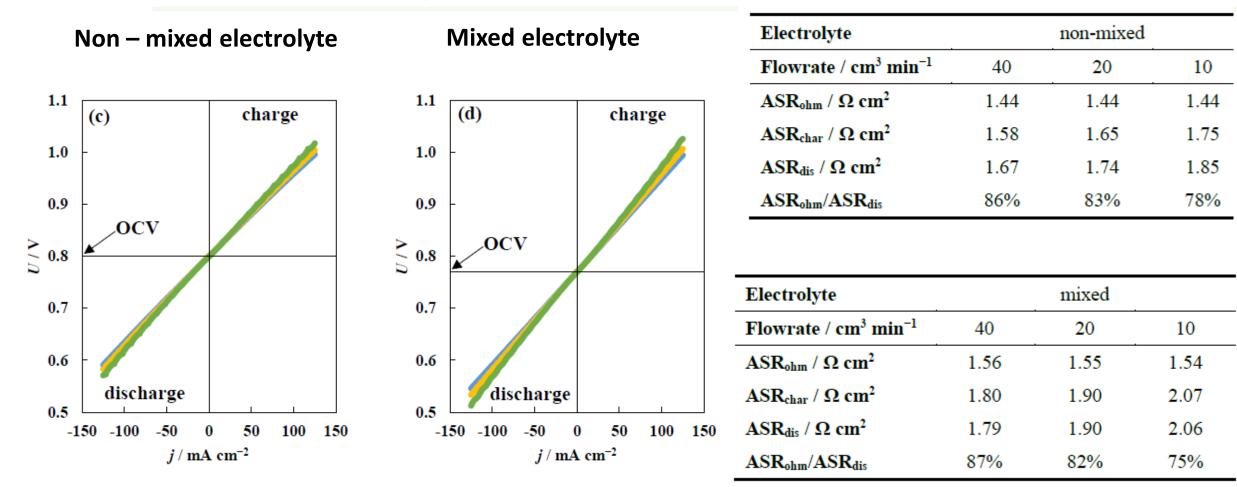
Negolyte composition	Membrane	Rohm (Ω cm²)	Rohm (%)	Rchar (Ω cm²)	Rdis (Ω cm²)
0.65M K-Na-FeCN + 0.65M SPr2V + 0.5M NH4Cl	FS-950	3.00	95%	3.12	3.17
0.65M K-Na-FeCN + 0.65M SPr2V + 0.5M NH4Cl	FS-830	1.80	87%	2.11	2.08
0.65M K-Na-FeCN + 0.65M SPr2V + 0.5M NH4Cl	FS-730	1.44	84%	1.73	1.72
0.65M K-Na-FeCN + 0.65M SPr2V + 0.5M NH4Cl (GB)	FS-730	0.80	76%	1.03	1.05
0.65M K-Na-FeCN + 0.65M SPr2V + 0.5M NH4Cl	FS-730 (act)	0.56	67%	0.83	0.83
0.65M K-Na-FeCN + 0.65M SPr2V + 0.5M NH4Cl	FS-720	0.60	68%	0.88	0.88

LC in +50% SOC, SGL 46EA, 4 cm2, 40 ml/min, RT GB... nitrogen-filled glove-box act... membrane activated (1h in H_2O 60°C, 1h in H_2O 80°C)

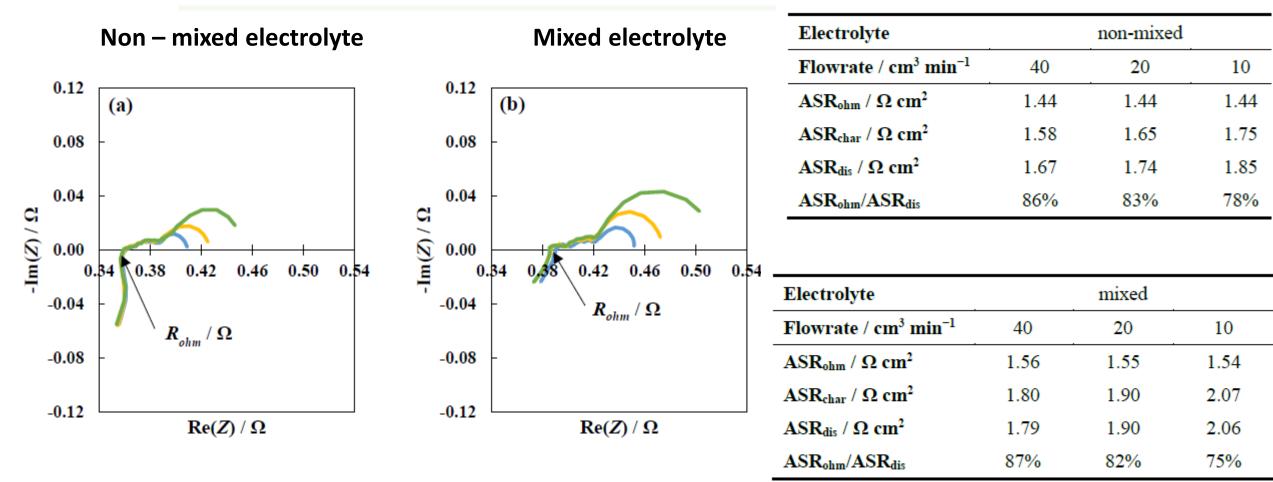
RFB TESTS: CELL CYCLING


Negolyte composition	Membrane	CE (%)	VE (%)	EE (%)	CU (%)	CD (%Qteo)
0.65M K-Na-FeCN + 0.65M SPr2V + 0.5M NH4Cl	FS-950	99.4	46.8	46.5	88	-5.0
0.65M K-Na-FeCN + 0.65M SPr2V + 0.5M NH4Cl	FS-830	99.1	58.3	57.7	86	-22.6
0.65M K-Na-FeCN + 0.65M SPr2V + 0.5M NH4Cl	FS-730	99.4	62.2	61.8	89	-5.0
0.65M K-Na-FeCN + 0.65M SPr2V + 0.5M NH4Cl (GB)	FS-730	99.7	74.4	74.2	92	-0.2
0.65M K-Na-FeCN + 0.65M SPr2V + 0.5M NH4Cl	FS-730 (act)	99.0	79.1	78.3	95	-2.5
0.65M K-Na-FeCN + 0.65M SPr2V + 0.5M NH4Cl	FS-720	98.5	76.3	75.1	92	-13.3

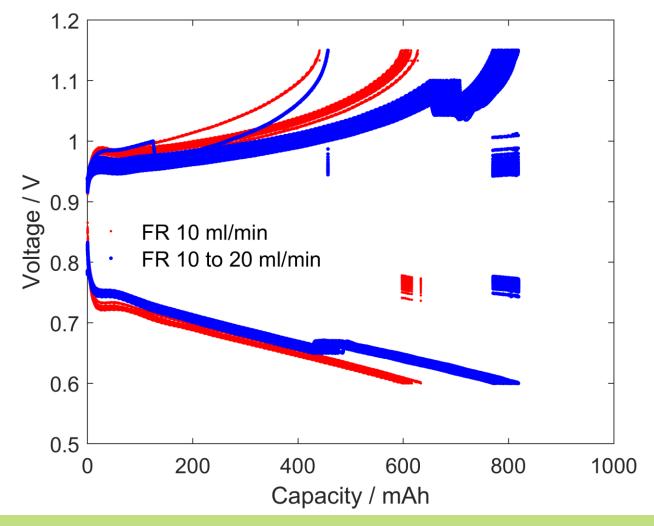
LC in +50% SOC, SGL 46EA, 4 cm2, 40 ml/min, RT GB... nitrogen-filled glove-box act... membrane activated (1h in H_2O 60°C, 1h in H_2O 80°C)


RFB TESTS: CELL CYCLING

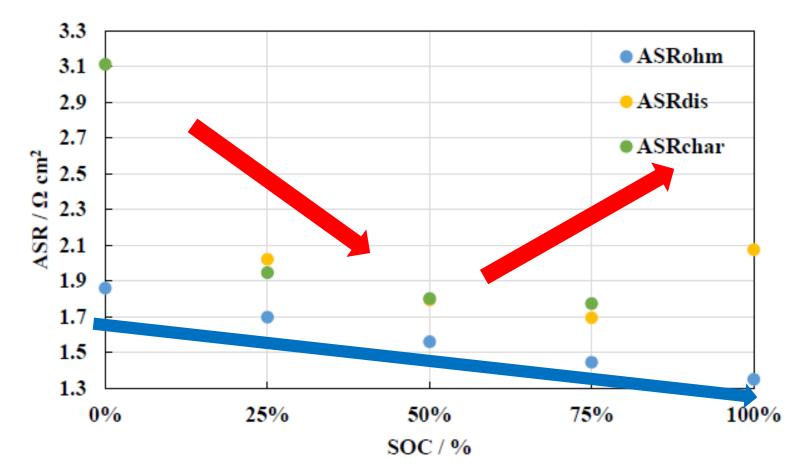
Negative electrode potential during CC-CV



CONFIDENTIAL

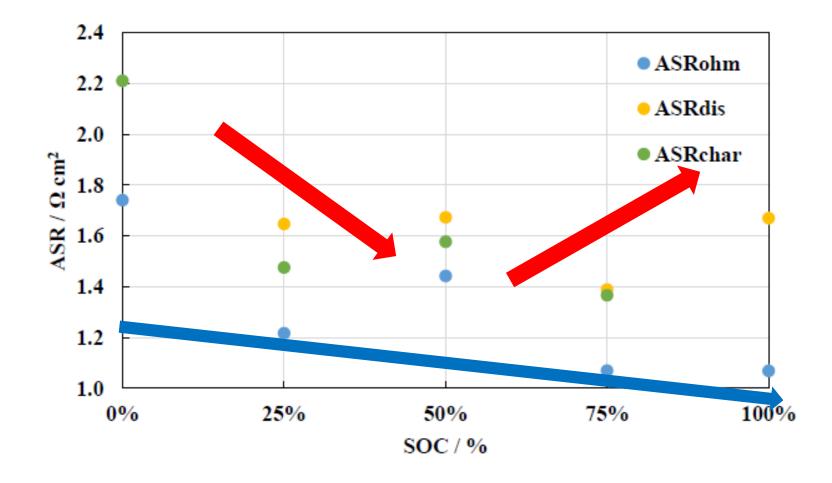

Battery testing – EIS + load cruves

Battery testing – EIS + load cruves


Effect of flow rate

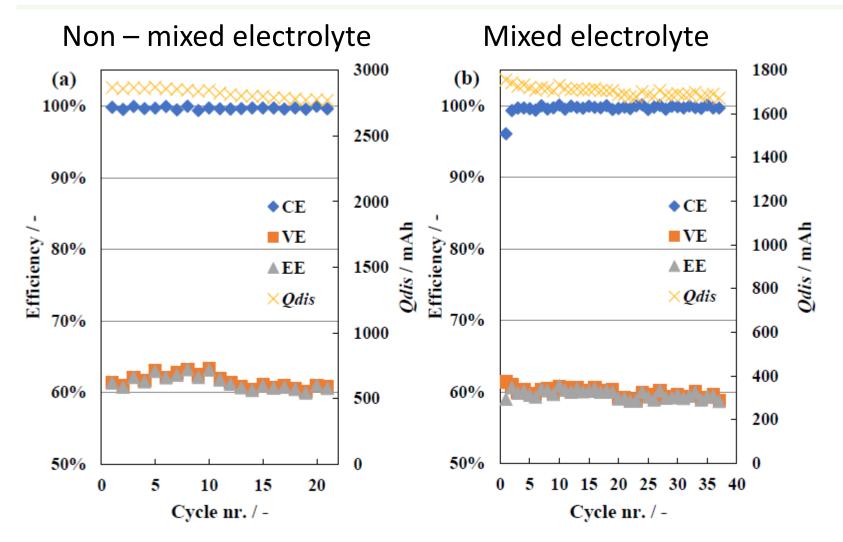
 Increase of capacity utilization by 25 % when flow rate is doubled for last 50 mV

Effect of SoC - mixed



Increasing SoC

- Ohmic resistance is decreasing conductivity
- Charge transfer resistence is increasingconductivity


$$j_0 = nFk_0 c_{ox}^{\alpha} c_{red}^{1-\alpha}$$

Effect of SoC – non-mixed

Probably temperature effect for 50 %SoC

Cycles

Cycles

Flootvolyto Cycle		CE		VE	EE	Q	đis	${\it Q}_{theo}$	CU	
Electrolyte	Cycle -	%	·	%		mAh		mAh	%	
non-mixed	the first	98.4	. 6	63.8		3221		3602	89.4	
non-mixed	the last	100.2	6	50.0	60.1	29	07	3602	80.7	
mixed	the first	98.8	6	53.0	62.2	1966		2091	94.0	
mixed	the last	99.6	5	9.1	58.9	1906		2091	91.2	
	<u> </u>	CE	VE	EE	Q_{dis}	${\it Q}_{{\it theo}}$	CU	dQ/dc	dQ/day	
Electrolyte	Cycles	%	%	%	mAh	mAh	%	%Q _{theo}	%Qtheo	
non-mixed	21	99.7	61.6	61.4	2872	3602	79.7	-0.13	-0.010	
mixed	37	99.7	59.9	59.7	1755	2091	84.0	-0.11	-0.009	

Conclusions

- Analytical model of shunt current losses and pressure losses and CFD model were developed
- Effect of flow rate is significant mainly significant
- Increase of flow rate at the end of cycle might significatnly increase capacity utilization
- Effect of electrolyte SoC on the resistence of the cell was examined

Thank you!

The research leading to these results has received funding from the European Union under Grant Agreement no. 875613

Disclaimer/ Acknowledgment

Copyright ©, all rights reserved. This document or any part thereof may not be made public or disclosed, copied, or otherwise reproduced or used in any form or by any means, without prior permission in writing from the HIGREEW Consortium. Neither the HIGREEW Consortium nor any of its members, their officers, employees, or agents shall be liable or responsible, in negligence or otherwise, for any loss, damage or

expense whatever sustained by any person because of the use, in any manner or form, of any knowledge, information or data contained in this document, or due to any inaccuracy, omission or error therein contained.

All Intellectual Property Rights, know-how and information provided by and/or arising from this document, such as designs, documentation, as well as preparatory material in that regard, is and shall remain the exclusive property of the HIGREEW Consortium and any of its members or its licensors. Nothing contained in this document shall give, or shall be construed as giving, any right, title, ownership, interest, license, or any other right in or to any IP, know-how and information.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 875613. The information and views set out in this publication does not necessarily reflect the official opinion of the European Commission. Neither the European Union institutions and bodies nor any person acting on their behalf, may be held responsible for the use which may be made of the information contained therein.