

The importance of the electrolyte-membrane combination for long lifetime Viologen-Tempo AORFB

16 May 2023

Laura Pastor Muñoz

Eduardo Sánchez, Maddalen Agirre, Nerea Marquinez, Aitor Beloki

CIC energigune

MEMBER OF BASQUE RESEARCH & TECHNOLOGY ALLIANCE

© CICenergiGUNE 2021 · Todos los derechos reservados

> AORFB GOING ORGANIC!

- Earth abundant
- Low cost
- Environmentally friendly
- Thermally stable
- Easy tailorability

AORFB

AORFB: Viologen-TEMPO system

HIGH PERFORMANCE & LOW-COST SOLUTION

One-Step Straightforward Synthetic routes

Electrochemical characterization and solubility

Compound	E _{1/2} (V vs. SHE)	D (cm ² s ⁻¹)	k ₀ (cm s ⁻¹)	Water solubility (M)
TEMPO-SO₄K	0,82	8,9 x 10 ⁻⁶	1,5 x 10 ⁻²	2,7
(SPr) ₂ V	-0,43	2,0 x 10 ⁻⁶	2,6 x 10 ⁻²	1,2

>

> Electrolyte screening

> Electrolyte screening

	Anolyte	Catholyte	σ (mS/cm)	
A	0,5M SPr ₂ V + 2,6M NH₄Cl	0,5M TEMPO-SO ₄ K + 3,6M NH₄Cl + 0,9M KCl	186	271
В	0,5M SPr ₂ V + 2M NaCl	0,5M TEMPO-SO ₄ K + 3,5M NaCl	60	153
С	0,5M SPr ₂ V + 1,5M (NH₄)₂SO₄	0,5M TEMPO-SO ₄ K + 2M (NH₄)₂SO₄	91	175

Electrolyte screening CELL TESTING

	Anolyte	Catholyte	R _{ohm} (Ω·cm²) SOC 50
Α	0,5M SPr ₂ V + 2,6M NH₄Cl	0,5M TEMPO-SO ₄ K + 3,6M NH₄Cl + 0,9M KCl	1,68
В	0,5M SPr ₂ V + 2M NaCl	0,5M TEMPO-SO ₄ K + 3,5M NaCl	2,26
С	0,5M SPr ₂ V + 1,5M (NH₄)₂SO₄	0,5M TEMPO-SO ₄ K + 2M (NH₄)₂SO₄	1,92

Comparative study of membranes

Final electrolyte formulation

0,5M TEMPO-SO₄K in 3,6M NH₄Cl + 0,9M KCl

0,5M (SPr)₂V in 2,6M NH₄Cl

FS-830

Comparative study of membranes >

Final electrolyte formulation

0,5M TEMPO-SO₄K in 3,6M NH₄Cl + 0,9M KCl

0,5M (SPr)₂V in 2,6M NH₄Cl

© CICenergiGUNE. 2021. All rights reserved.

Comparative study of membranes

Polarization Curves SOC 50

Power density curves SOC 50

Comparative study of membranes

> Conclusions

High solubility in aqueous media in order to achieve high energy densities (cell voltage 1,25 V)

- Optimal electrolyte formulation to reach higher conductivities
- Critical role of chloride anions to avoid formation of aggregates
- Importance of the electrolyte-membrane combination when calculating parameters such as VE, capacity retention and cell resistance.
- Higher voltage efficiencies (>70%) and outstanding peak power densities 262 mW/cm2
- Long cycling stability in terms of capacity and a low-capacity fade rate of 0.001% per cycle for over 350 cycles with nearly 100% Coulombic efficiency

CIC energi GUNE

BASQUE RESEARCH & TECHNOLOGY ALLIANCE

> Acknowledgements

Nerea Marquínez

Aitor Beloki

Funding

Basque Government (GV-ELKARTEK-2020 KK-2020/00078 & GV-ELKARTEK-2022 KK-2022/00043)

GRACIAS · THANK YOU · ESKERRIK ASKO

CIC energigune

MEMBER OF BASQUE RESEARCH & TECHNOLOGY ALLIANCE

Parque Tecnológico · c/Albert Einstein 48 01510 Vitoria-Gasteiz · (Álava) SPAIN +34 945 29 71 08

Laura Pastor Muñoz CIC energiGUNE's role lpastor@cicenergigune.com

Making sustainability real

