

Engineering Porous Electrodes for Redox Flow Batteries

Antoni Forner-Cuenca

Associate Professor Department of Chemical Engineering and Chemistry Eindhoven University of Technology

HIGREEW Workshop – Flow Batteries, bringing the technology to the market CIC energiGUNE, Vitoria-Gasteiz (ES) | 16th May 2023

How does increasing power density and reducing materials costs affect the economics?

Minimizing area-specific resistance is a powerful strategy for reducing reactor cost contributions to the total system cost

References to TE analysis: Darling et al., Energy Environ. Sci. 7, 3459 (2014), Noack et al., Energies 9(8) 627 (2016).

Understanding electrodes at multiple length scales

Minimizing area-specific resistance is a powerful strategy for reducing reactor cost contributions to the total system cost

Forner-Cuenca, Current Opinion in Electrochemistry, 18, 113 (2019)

Electrode structuring improves mass transfer

Towards predictive electrode design

Chemistry-specific electrodes

Bottom-up design of electrode microstructures

Model validation: non-aqueous electrolyte

Van der Heijden & van Gorp et al., Journal of The Electrochemical Society 169(4) 040505 (2022)

Simulation can support engineers in selecting economical operating conditions

Paper electrode

Van der Heijden & van Gorp et al., *Journal of The Electrochemical Society* 169(4) 040505 (2022)

Coupling genetic algorithms with Multiphysics pore network modeling

The microstructure evolves to generate longitudinal pathways of low tortuosity

The microstructure evolves to generate longitudinal pathways of low tortuosity

How do we predict electrode structures that can be manufactured with existing methods?

Van Gorp, R. & Van der Heijden, M. et al., Chem. Eng. J., 455, 139947 (2022)

Carbon fiber electrode manufacturing

Representative manufacturing route:

Estimated production costs: <u>20-80 € m⁻²</u>

Current state-of-the-art commercial manufacturing methods are complex and multi-step processes...can we consider alternative synthetic pathways?

From SGL white paper on gas diffusion layer manufacturing, C. Minke et al., J. Power Sources 324, 116, 2017

Bottom-up engineered microstructures with phase separation

Estimated production costs: <u>5-12 € m⁻²</u>

Forner-Cuenca, Provisional Patent U.S. Serial No. 62/976,601; Wan & Jacquemond, Adv. Mater. 2021, 2006716