

Electrolyte regeneration of vanadium flow batteries

Nicola Poli PhD student Department of Industrial Engineering University of Padua **Nicola.poli@unipd.it** The technology

Vanadium flow batteries

9kW/27 kWh VFB

	Causes		
Concentration imbalance	 Crossover of water through the membrane. Crossover of vanadium species over the membrane. 		
Oxidative imbalance	 Hydrogen evolution due to high overpotential. Oxidation of V(II) electrolyte due to the air 		
Reductive imbalance	 Corrosion in V(V) electrolytes accompanied with reduction to V(IV). Precipitation of V(V) at elevated temperature (If you look more closely, it can be also regarded as concentration imbalance) 		

M. Skyllas-Kazacos et al. "State of charge monitoring methods for vanadium redox flow battery control" *Journal of Power Sources*, 196 (20) (2011), pp. 8822-8827

Rodby E.K. et al., Assessing the levelized cost of vanadium redox flow batteries with capacity fade and rebalancing, JPS (2020).

M. Skyllas-Kazacos et al. "State of charge monitoring methods for vanadium redox flow battery control" *Journal of Power Sources*, 196 (20) (2011), pp. 8822-8827

Rodby E.K. et al., Assessing the levelized cost of vanadium redox flow batteries with capacity fade and rebalancing, JPS (2020).

Time [years]

Rodby E.K. et al., Assessing the levelized cost of vanadium redox flow batteries with capacity fade and rebalancing, JPS (2020).

The solution

Chemical regeneration

2° step: put the oxalic acid into the tanks

Only one step: Electrochemical reduction of the positive electrolyte

Energy consumed

$$E_c[kWh] = U_{cell,reg.}[V] * N_{cell} * j[Am^{-2}] * A[m^2] * 24h$$

Cost of OA = 1.10 €/kg €/kWh Labor costs = 5(for dosing the additive)

Rodby E.K. et al., Assessing the levelized cost of vanadium redox flow batteries with capacity fade and rebalancing, JPS (2020).

2 h

Oxalic acid

400

300

500

Time [years]

Time [years]

Conclusion

- The model was used to investigate optimal configurations of minimum costs in terms of rebalancing reactor design and system operation.
- Interestingly, the electrochemical rebalancing process here studied, if properly optimized, can present a total cost (investment plus operation) lower than a chemical rebalancing process using oxalic acid as reducing agent.
- In the case of a VFB rated 50 kW/500 kWh affected by a yearly imbalance rate of 20 %, it was found that a rebalancing process performed once a year result suitable only with slow regeneration process, lasting 5–10 h.

Novel electrolyte rebalancing method for vanadium redox flow batteries

Nicola Poli^{a,b}, Michael Schäffer^{c,d}, Andrea Trovò^{a,b}, Jens Noack^{c,d}, Massimo Guarnieri^{a,b,e}, Peter Fischer^{c,d}

^a Department of Industrial Engineering, University of Padua, Via Gradenigo 6/a, 35131 Padova, Italy ^b Interdepartmental Centre Giorgio Levi Cases for Energy Economics and Technology, University of Padua, Via Gradenigo 6/a, 35131 Padova, Italy ^c Department of Applied Electrochemistry, Fraunhofer Institute for Chemical Technology, Joseph-von-Fraunhofer-Strasse 7, 76327 Pfinztal, Germany ^d German-Australian Alliance for Electrochemical Technologis for Storage of Renewable Energy – CENELEST, University of New South Wales, Sydney, Australia

HIGHLIGHTS

GRAPHICAL ABSTRACT

- The method uses a rebalancing cell fed from the positive electrolyte tank.
 The rebalancing cell reduces the concentration of V(V) ions in the cath-
- olyte.
 A multi-physical numerical model is
- used to control and optimize the process. • The effectiveness of the method has
- The enectiveness of the method has been tested and validated on a real VRFB.

Check for updates

Journal of Energy Storage 58 (2023) 106404

Contents lists available at ScienceDirect

Journal of Energy Storage

journal homepage: www.elsevier.com/locate/est

Research Papers

Electrochemical rebalancing process for vanadium flow batteries: Sizing and economic assessment

Nicola Poli^{a,b}, Andrea Trovò^{a,b}, Peter Fischer^c, Jens Noack^{c,d}, Massimo Guarnieri^{a,b,*}

^a Department of Industrial Engineering, University of Padua, Padova, Italy

^b Interdepartmental Centre Giorgio Levi Cases for Energy Economics and Technology, University of Padua, Padova, Italy

^c Fraunhofer-Institut für Chemische Technologie, Pfinztal, Germany

^d University of New South Wales, Sydney, Australia

Energy

Storac

EESCOLAB

ELECTROCHEMICAL ENERGY STORAGE AND CONVERSION LABORATORY

Thank you

Nicola Poli PhD student Department of Industrial Engineering University of Padua **Nicola.poli@unipd.it**

Cost of $OA = 1.10$	€/kg	
Labor costs = 5	€/kWh	
(for dosing the additive	2)	

Costs

10 kW / 30 kWh

Costs

Costs

50 kW / 500 kWh

