

Results of the European Project SONAR with Deeper Insight into Microstructure Simulations of Flow Batteries

> Amadeus Wolf Karlsruhe Institute of Technology

HIGREEW Workshop Vitoria-Gasteiz 2023

Motivation

- Modelling for the search for new active materials for redox flow batteries
- Huge number of possibilities of organic active materials for redox flow batteries
- Develop a framework for virtual evaluation of RFBs across all length scales
- Multiscale simulations, measurements & machine learning to assess LCOS

Cathode		Mn ₂ O ₃ /MnO ₂	$Fe(CN)_6^4/Fe(CN)_6^3$	cu/cu ⁺	1-/13-	Fe ²⁺ /Fe ³⁺	V0 ²⁺ /V0 ²⁺	Br-/CBr2	Br/Br2	NpO2 ²⁺ /NpO2 ⁺	12/103 ⁻	02-/02	Cr ³⁺ /HCrO4	cr/cl ₂	Pb2+/PbO2	Mn ²⁺ /Mn ³⁺	Ce ³⁺ /Ce ⁴⁺	Co ²⁺ /Co ³⁺
Anode	E ⁰ ,V	0.15	0.36	0.52	0.54	0.77	0.99	1.04	1.09	1.14	1.2	1.23	1.35	1.36	1.46	1.54	1.72	1.82
AI/AI(OH)4	-2.31	1		1			1	_				В						
Zn/Zn(OH)4-2	-1.22	B	В			11	4 - 4											
Zn/Zn ²⁺	-0.76			C 1	В	В	В	B	С					В			В	1
Fe/Fe ²⁺	-0.45					В	1	-	-									
S22-/S	-0.43		В						С			В				_		
Cr ²⁺ /Cr ³⁺	-0.41					С	10.1		Α				B					
Cd/Cd ²⁺	-0.40					В												
V ²⁺ /V ³⁺	-0.26					В	С	B				В		_		B	B	В
Pb/Pb ²⁺	-0.13	1.1						10.00							В			
Sn/Sn ²⁺	-0.14								В									
H_2/H^+	0.00	1				В	В		B					В				
Ti ³⁺ /TiO ²⁺	0.04			1		A		A						A		B		
Cu ⁺ /Cu ²⁺	0.15			B		1.								-	B			
Np ³⁺ /Np ⁴⁺	0.15									В								
Sn ²⁺ /Sn ⁴⁺	0.15					B			В									
Cu/Cu ²⁺	0.34				-	7.1									В			
1 ⁻ /l ₂	0.54			1							A							
Fe ²⁺ /Fe ³⁺	0.77			1111					-	1	-					B		

Development of a model-based high-throughput screening method

Screening workflow for electroactive molecules

Electronic structure modelling of electroactive molecules

SNAR

Encounter complexes generated based on electro-/nucleophilicity descriptors

Acid-catalyzed degradation reaction of BQDS

Danmarks Tekniske Universitet

+H₃O⁺

Meso-scale modelling of the electrochemical interface

kMC-simulated electrode potentials at steady-state for MV⁺ -> MV²⁺

Tekniske Universitet

alR

Lattice-Boltzman velocity field simulation

Workflow illustration of LBM based electrode optimisation

5

 Bridging the scales: connection of electrochemical double layer properties, porous SeiNAR media flow and continuum modeling of RFBs

6

• Stack and system level modelling

